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Abstract. We introduce a new robust approach to categorize image databases :
Adaptative Robust Competition (ARC). Providing the best overview of an image
database helps users browsing large image collections. Estimating the distribu-
tion of image categories and finding their most descriptive prototype represent the
two main issues of image database categorization. Each image is represented by a
high-dimensional signature in the feature space. A principal component analysis
is performed for every feature to reduce dimensionality. Image database overview
by categorization is computed in challenging conditions since clusters are over-
lapping and the number of clusters is unknown. Clustering is performed by mini-
mizing a Competitive Agglomeration objective function with an extra noise clus-
ter collecting outliers.

1 Introduction

Over the last few years, partly due to the development of the Internet, more and more
multimedia documents that include digital images have been produced and exchanged.
However, locating a target image in a large collection became a crucial problem. The
usual way to solve it consists in describing images by keywords. Because this is a
human operation this method suffers from subjectivity and text ambiguity and requires
huge time to manually annotate a whole database. By image analysis images can be
indexed by automatic description which only depend on their objective visual content.
So Content-based Image Retrieval (CBIR) became a highly active research field.

The usual scenario of CBIR is a query by example, which consists in retrieving
images of the database similar to a given one. The purpose of browsing is to help the
user finding his image query by providing first the best overview of the database. Since
the database cannot be presented entirely, a limited number of key images have to be
chosen. It means we have to find the most informative images which allow the user to
know what the database contains. The main issue is to estimate the distribution (usually
multi-modal) of image categories. Then we need the most representative image for each
category.

Practically, this is a critical point in the scenario of content-based query by example:
the “page zero” problem. Existing systems often begin by presenting either randomly
chosen images or keywords. In the first case, some categories are missed, and some
images can be visually redundant. The user has to pick several random subsets to find an
image corresponding to the one he has in mind. Only then can the query by example be



performed. In the second case, images are manually annotated with keywords, and the
first query is processed using keywords. Thus there is a need for presenting a summary
of the database to the user.

A popular way to find partitions in complex data is prototype-based clustering algo-
rithm. The fuzzy version (Fuzzy C-Means [1]) has been constantly improved for twenty
years by the use of the Mahalanobis distance [2], the adjunction of a noise cluster [3] or
the competitive agglomeration algorithm [4] [5]. A few attempts to organize and browse
image databases have been made: Brunelli and Mich [6], Medasani and Krishnapuram
[7] and Frigui et al. [8]. A key point of categorization is the input data representation.
A set of signatures (color, texture and shape) allows to describe the visual appearance
of the image. The content-based categorization should be performed by clustering these
signatures. This operation is computed in challenging conditions. The feature space is
high-dimensional: computations are affected by the curse of dimensionality. The num-
ber of clusters in the image database is unknown. Natural categories have various shapes
(sometimes hyper-ellipsoidal but often more complex), they are overlapping and they
have various densities.

The paper is organized as follows:
�
2 presents the background of our work. Our

method is then presented in section 3. The results on image databases are discussed
and compared with other clustering methods in section 4 and section 5 summarizes our
concluding remarks.

2 Background

The Competitive Agglomeration (CA) algorithm [4] is a fuzzy partitional algorithm
which allows not to specify the number of clusters. Let �������	��

��������������������� be
a set of � vectors representing the images. Let ������ "!�
$#%�&�����'�����)(*��� represents
prototypes of the ( clusters. Competitive Agglomeration (CA) algorithm minimizes
the following objective function:
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; 9 4 � � �= ! 7 represents the distance from an image signature � � to a cluster prototype ! . The choice of the distance depends on the type of clusters having to be detected.
For spherical clusters, Euclidean distance will be used.

5 !�� is the membership of �$� to
a cluster # .

The first term is the standard FCM objective function [1]: the sum of weighted
square distances. It allows us to control shape and compactness of clusters. The second
term (the sum of squares of clusters’ cardinalities) allows us to control the number of
clusters. By minimizing both these terms together, the data set will be partitioned in



the optimal number of clusters while clusters will be selected to minimize the sum of
intra-cluster distances.

The cardinality of a cluster is defined as the sum of the memberships of each image
to this cluster:
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Membership can be written as:
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where:
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and:
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The first term in equation (4) is the membership term in FCM algorithm and takes
into account only relative distances to the clusters. The second term is a bias term which
is negative for low cardinality cluster and positive for strong clusters. This bias term
leads to a reduction of cardinality of spurious clusters which are discarded if their car-
dinality drops below a threshold. As a result only good clusters are conserved.B should provide a balance [4] between the two terms of (1) so B at iteration c is
defined by :
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B is weighted by a factor which decreases exponentially along iterations. In the first
iterations the second term of equation (1) dominates so the number of clusters drops
rapidly. Then, when the optimal number of clusters is found, the first term dominates
and the CA algorithm seeks the best partition of the signatures.

3 Adaptative Robust Competition (ARC)

3.1 Dimensionality reduction

A signature space has been built for a 1440 image database (Columbia Object Image
Library [9]). It contains 1440 gray scale images representing 20 objects, where each
object is shot every 5 degrees. This feature space is high-dimensional and contains
three signatures:

1. Intensity distribution (16-D): the gray level histogram.



2. Texture (8-D): the Fourier power spectrum is used to describe the spatial frequency
of the image [10].

3. Shape and Structure (128-D): the correlogram of edge-orientations histogram (in
the same way as color correlogram presented at [11]).

The whole space is not necessary to distinguish images. To prevent clustering from
expensive computation, a principal component analysis is performed to reduce the di-
mensionality. For each feature only the first main components are kept.

To visualize the problems raised by the categorization of image databases, the dis-
tribution of image signatures is shown on figure 1. This figure presents the subspace
corresponding to the three principal components of the feature gray level histogram.
Each natural category is represented with a different color. Two main problems appear:
categories overlap and natural categories have different and various shapes.
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Fig. 1. Distribution of gray level histograms for Columbia database on the three principal com-
ponents

3.2 Adaptative competition

B is the weighting factor of the competition process. In equation (7) B is chosen accord-
ing to the objective function and has the same value and effect for each cluster. Though,
during the process, B influences the computation of memberships in equations (4) and
(6). The term

5 T ��U MM8P appreciates or depreciates the membership
5 MEP of data point � P to

cluster l according to the cardinality of the cluster. This will cause this cluster to be
conserved or discarded respectively.

Since clusters may have different compactness, the problem is to attenuate the effect
of
5 T �2U MMEP for loose clusters, in order to not discard them too rapidly. We introduce an



average distance for each cluster m :
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And an average distance for the whole set of image signatures :
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Then, B in equation (6) is expressed as:

B M 4 c\7r� ; 9nwo�q; 9nwo=q 4 mX7 B 4 c\7&I$J?Kp�tsfmxsf( (10)

The ratio ; 9nwo�q WX; 9nwo=q 4 m?7 is lower to 1 for loose clusters, so the effect of
5 T �2U MM8P is at-

tenuated : cardinality of cluster is slowly reduced. On the contrary, ; 9nwo�q W`; 9nwo�q 4 mX7 is
greater than 1 for compact clusters, so both memberships to these clusters and cardinal-
ities are increased: they are more resistant in the competition process. Hence we build
an adaptative competition process given by B M 4 c\7 for each cluster m .
3.3 Robust clustering

A solution to deal with noisy data and outliers is to capture all the noise signatures in
a single cluster [3]. A virtual noise prototype is defined, which is always at the same
distance y from every point in the data-set. Let this noise cluster be the first cluster, and
noise prototype noted as  / . So we have:

; 9 4 �]�=�� $/�7d�uy 9 (11)

Then the objective function (1) has to be minimized with the following particular
conditions:

– Distances for the good clusters # are defined by:

; 9 4 � � �= ! 7r� 4 � � @% ! 7:z0{ ! 4 � � @| ! 7}I$J?Kv~Ns�#fsu(�� (12)

where { ! are positive definite matrices. If { ! are identity matrix, then the distance
is Euclidean distance, and the prototypes of clusters # for ~Ns�#fsf( are:

 ! � Z 1�2.3/ 465 !�� 7 9 � �Z 1�2.3/ 4D5 !�� 7 9 (13)

– For the noise cluster #*��� , distance is given by (11).



The noise distance y has to be specified. It would vary from an image database to
another, so it would be based on data-set statistical information. It is computed as the
average distance between image signatures and good cluster prototypes:

y 9 �by 9g
Z ,!�. 9 Z

1��.3/ ; 9 4 �]���� �!?7� 4 (�@��X7 (14)

The noise cluster is then supposed to catch outliers that are at an equal mean distance
from all cluster prototypes. Initially, y cannot be computed using this formula, since
distances are not yet computed. It is just initialized to y g , and the noise cluster becomes
significant after a few iterations. y g is a factor which can be used to enlarge or minimize
the size of the noise cluster, though in the results that will be presented, y g ��� .

The new ARC algorithm using adaptative competitive agglomeration and noise
cluster can now be summarized:

Fix the maximum number of clusters ( .
Initialize randomly prototypes for ~*s�#fsf( .
Initialize memberships with equal probability for each image to belong to each
cluster.
Compute initial cardinalities for ~Ns�#usf( using equation (3).
Repeat

Compute ; 9 4 � � �= ! 7 using (11) for #*�H� and (12) for ~*s�#fsf( .
Compute B ! for �ts�#us�( using equations (10) and (7).
Compute memberships

5 !�� using equation (4) for each cluster and each signa-
ture.
Compute cardinalities � ! for ~Ns�#usf( using equation (3).
For ~Ns�#fsu( , if �v!v��l=�\K?�Xm?�"J`��; , discard cluster # .
Update number of clusters ( .
Update prototypes using equation (13).
Update noise distance y using equation (14).

Until (prototypes stabilized).

Hence a new clustering algorithm is proposed. The two next points address two
problems raised by image database categorization.

3.4 Choice of distance for good clusters

What would be the most appropriate choice for (12) ? The image signatures are com-
posed of different features which describe different attributes. The distance between sig-
natures is defined as the weighted sum of partial distances for each feature �ts�I�sf� :

; 4 �]���= �!?7r� Q-
� .3/<� !�� � ; �

4 �"���= >!�7 (15)



For each feature, the natural categories in image databases have various shapes,
the more often hyper-ellipsoidal, and overlap each other. To retrieve such clusters, Eu-
clidean distance is not appropriate. So the Mahalanobis distance [2] is used to discrim-
inate image signatures. For clusters ~�s�#�s�( , partial distances for feature I are
computed using :

; � 4 � � �� ! 7d��
 ( !�� � 
 /��E��� 4 � �6� � @% !�� � 7Ez�(*� /!�� � 4 � ��� � @| !�� � 7 (16)

where � ��� � and  !�� � are the restrictions of image signature � � and cluster prototype ! to the feature I . � � is the dimension of both � �6� � and  !�� � : it is the dimension of
the subspace corresponding to feature I . ( !�� � is the covariance matrix (of dimension� ��� � � ) of cluster # for the feature I :

(r!�� � � Z 1�2.3/ 4D5 !�� 7 9 4 � ��� � @| !�� � 7 4 � �6� � @% !�� � 7 zZ 1��.3/ 465 !�� 7 9 (17)

3.5 Normalization of features

The problem is to compute the weights � !�� � used in equation (15). The features have
different orders of magnitude and different dimensions, so the distance over all features
cannot be defined as a simple sum of partial distances for each feature. The idea is to
learn the weights during the clustering process. Ordered Weight Averaging [12] is used,
as proposed in [8].

First, partial distances are sorted in ascending order. For each feature I , the rank of
corresponding partial distance is obtained:

K � �fKX�<�3c 4 ; � 4 � � �= ! 7=7 (18)

And the weight at iteration c���  is updated using:

��¡£¢'¤!�� � � ��¡£¢ �
/
¤!�� � S ~ 4 �¥@|K � 7� 4 � S �X7 (19)

It has two positive effects. First, features with small values are weighted with a
higher weight than those with large values, so the sum of partial distances is equili-
brated. Secondly, since the weights are computed during the clustering process, if some
images are found to be similar according to one feature, their partial distance will be
small, and the effect of this feature will be accentuated: it allows to find a cluster which
contains images similar according to a single main feature.

3.6 Algorithm outline

Fix the maximum number of clusters ( .
Initialize randomly prototypes for ~*s¦#�sf( .
Initialize memberships with equal probability for each image to belong to each
cluster.
Initialize feature weights uniformly for each cluster ~*s¦#�sf( .



Compute initial cardinalities for ~Ns¦#§su( .
Repeat

Compute covariance matrix for ~%sH#�s¨( and feature subsets �©s¨Iusª�
using (17).
Compute ; 9 4 � � �= ! 7 using (11) for #*�H� and (16) for ~*s¦#�sf( .
Update weights for clusters ~*s�#§su( using (19) for each feature.
Compute B ! for �ts�#§su( using equations (10) and (7).
Compute memberships

5 !�� using equation (4) for each cluster and each signa-
ture.
Compute cardinalities �x! for ~Ns¦#§su( .
For ~Ns%#�sf( , if �t!v��l=�>KX�Xm?�\J`�6; discard cluster # .
Update number of clusters ( .
Update prototypes using equation (13).
Update noise distance y using equation (14).

Until (prototypes stabilize).

4 Results and discussion

The ARC algorithm is compared with two other clustering algorithms: the basic CA
algorithm [4] and the Self-Organization of Oscillator Network (SOON) algorithm [8].

The SOON algorithm can be summarized as follows:

1. Each image signature is associated to an oscillator characterized by a phase variable
that belongs to V  >�'�'Y .2. Whenever an oscillator’s phase reaches � , it resets to   and other oscillators’ phases
are either increased or decreased according to a similarity function.

3. Oscillators begin to clump together in small groups. Within each group, oscillators
are phase-locked. After a few cycles, existing groups get bigger by absorbing other
oscillators and merging with other groups.

4. Eventually, the system reaches a stable state where the image signatures are orga-
nized into the optimal number of stable groups.

For each category, a prototype is chosen according to the following steps:« The average value of each feature is computed over image.« Then, the average of all images defines a virtual prototype.« The real prototype is the nearest image to the virtual one.

The ground truth of Columbia database is shown on figure 2. The three summaries
are presented on figures 2 and 3. Quite all the natural categories are retrieved with the
three methods. But with SOON or CA algorithms, some categories are split in several
clusters, so several prototypes are redundant. Our method provides a better summary
with less redundancy.

Tables 1 and 2 present the membership matrices of objects to clusters which de-
scribe the content of each cluster. Since the simple CA algorithm has no cluster to col-
lect ambiguous image signatures, clusters obtained with this method are noisy. Besides



Fig. 2. left: ground truth: the 20 objects of the Columbia database, right: Summary obtained with
ARC algorithm

Fig. 3. left: Prototypes of clusters obtained with SOON algorithm, right: Prototypes of clusters
obtained with CA algorithm



Table 1. This matrix shows how many pictures of each object belong to a cluster obtained with
ARC.

Object 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Cluster

1 72 . . . . . . . . . . . . . . . . . . .
2 . 3 1 1 . . . . . . 2 . 3 . . . . . . .
3 . . 48 . 4 4 . . . 5 . . . . . . . . 4 .
4 . 3 4 70 . . . 15 . . . . . . . 13 . . . .
5 . . . . 32 . . . . . 1 . . . . . . . . .
6 . . . . . . . . . . . . . . . . . . . .
7 . . . . 3 . 67 . . . 12 . . . . . . . . .
8 . . . . 2 . 5 57 . . 1 . . . . . . . . .
9 . . . . 13 . . . 70 5 . . . . . . . . . .
10 . . . . . . . . . . . . . . . . . . . .
11 . 9 . . . . . . . 1 51 . . . . . . . . .
12 . . . . 3 . . . . 5 . 72 . . . . . . . .
13 . 22 . . . . . . . . 5 . 21 . . . . . . .
13 . 12 . . . . . . . . . . 48 . . . . . . .
14 . . . . . 1 . . . . . . . 72 . . . . 1 .
15 . . . . . . . . . . . . . . 72 . . . . .
16 . . . . . 2 . . . . . . . . . 59 . . . .
17 . . . . . . . . . . . . . . . . 72 . . .
18 . . . . . . . . . . . . . . . . . 72 . .
19 . . 18 . 2 35 . . . 14 . . . . . . . . 26 .
19 . . . 1 2 16 . . . 16 . . . . . . . . 23 .
19 . . 11 . 1 14 . . . . . . . . . . . . 19 .
20 . . . . . . . . . 2 . . . . . . . . . 72

noise . 23 5 . 10 . . . 2 24 . . . . . . . . . .

Table 2. The left matrix shows how many pictures of each object belong to a cluster obtained
with CA and the right matrix shows the result of the same experiment with SOON.

Object 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Cluster

1 42 . . 4 . . . 1 . 2 6 . . . . . . . . .
1 30 . . . . . . 9 . . 1 . . . . . . . . .
2 . 35 . . . . 3 1 . . 1 . . . . . . . . .
3 . . 8 . . 30 . . . . . . . . . . . . 26 .
3 . . 10 . . . . . . 1 . . . . . . . . 10 .
4 . 1 2 31 22 . . 1 3 3 . . . . . . . . . .
5 . . . . 10 . 5 . . 54 3 . . . . . . . . .
6 . . . . . . . . . . . . . . . . . . . .
7 . . . . 1 . 61 . . . . . . . . . . 14 . .
8 . . . . 2 . . 21 19 . . . . . . . . . . 44
9 . . . . 5 . . 19 47 . . . . . . . . . . .
10 . . . . . . . . . . . . . . . . . . . .
11 . 5 . . 1 . . 3 . . 49 . . . . . . . . .
12 . . . . 12 . . . . . . 72 . . . . . . . .
13 . 17 . . . . . . . . 6 . 72 . . . . . . .
14 . . . . . . . 6 . . . . . 72 . . . . . .
15 . . . . . . 1 . . . . . . . 33 . . . . .
15 . . . . . . 2 . . . 4 . . . 39 . . . . .
16 . 13 . 37 . . . 12 . . 2 . . . . 72 . . . .
17 . . . . 1 . . . . . . . . . . . 72 . . .
18 . . . . 10 . . . . 3 . . . . . . . 29 . .
18 . . . . . . . . . 1 . . . . . . . 29 . .
19 . . 40 . 8 25 . . . 8 . . . . . . . . 26 .
19 . . 12 . . 17 . . . . . . . . . . . . 10 .
20 . . . . . . . . 3 . . . . . . . . . . 28

Object 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Cluster

1 21 . . . . . . . . . . . . . . . . . . .
1 51 . . . . . . . . . . . . . . . . . . .
2 . . . . . . . . . . . . . . . . . . . .
3 . . 7 . . 6 . . . . . . . . . . . . . .
4 . . . 72 . . . . . . . . . . . . . . . .
5 . . . . 15 . . . . . . . . . . . . . . .
5 . . . . 19 . . . . . . . . . . . . . . .
6 . . 4 . . 5 . . . . . . . . . . . . 6 .
6 . . 40 . . 43 . . . . . . . . . . . . 42 .
7 . . . . . . . . . . . . . . . . . . . .
8 . . . . . . . 16 . . . . . . . . . . . .
8 . . . . . . . 40 . . . . . . . . . . . .
9 . . . . . . . . 14 . . . . . . . . . . .

10 . . . . . . . . . 10 . . . . . . . . . .
10 . . . . . . . . . 16 . . . . . . . . . .
10 . . . . . . . . . 10 . . . . . . . . . .
11 . . . . . . . . . . 26 . . . . . . . . .
12 . . . . . . . . . . . 72 . . . . . . . .
13 . . . . . . . . . . . . 13 . . . . . . .
14 . . . . . . . . . . . . . 71 . . . . . .
15 . . . . . . . . . . . . . . 72 . . . . .
16 . . . . . . . . . . . . . . . 72 . . . .
17 . . . . . . . . . . . . . . . . 72 . . .
18 . . . . . . . . . . . . . . . . . 39 . .
18 . . . . . . . . . . . . . . . . . 33 . .
19 . . 2 . . 3 . . . . . . . . . . . . 5 .
20 . . . . . . . . . . . . . . . . . . . 72

noise . 72 19 . 38 15 72 16 57 36 46 . . 1 . . . . 19 .



the main natural category retrieved in a cluster, there are always other images which
belong to a neighbor cluster or to a wide spread cluster.

This problem is solved with both other methods. With ARC or SOON algorithms,
more than a third of categories are perfectly clustered, i.e. all the images of a single cate-
gory are grouped in a single cluster. The other natural categories present more variation
among their images, so are more difficult to retrieve.

Let’s consider one of these categories : the images representing the drug package
’tylenol’. It presents several difficulties: it is wide spread, and another category which
represents another drugs package is very similar. The cluster formed with the CA al-
gorithm contains 71 images and only 47 images of the good category (see figure 4).
The cluster formed with the SOON algorithm has no noise but contains only 14 images
(among 72) (figure 5). With our method, a cluster of 88 images is found, with 18 noisy
images and 70 good images.

Fig. 4. left: cluster of object ’drugs package’ obtained by ARC, and right: cluster of object ’drugs
package’ obtained by CA algorithm

Fig. 5. cluster of object ’drugs package’ obtained by SOON algorithm

The CA algorithm suffers from the noisy data which prevent it from finding the
good clusters.



On the contrary, the SOON algorithm rejects lot of images in the noise cluster: thus
good clusters are pure, but more than a quarter of the database is considered as noise.
Since whole categories can be rejected (table 2 shows that 2 complete categories of
Columbia database are in the noise cluster) the image database is not well represented.

ARC method avoids these drawbacks. It finds clusters which contain almost all
images of the natural category, with a only small amount of noise. The noise cluster
contains only really ambiguous images which would affect the results by biasing the
clustering process.

5 Conclusion

We have presented a new unsupervised and adaptative clustering algorithm to categorize
image databases: ARC. When prototypes of each category are picked and collected to-
gether it provides a summary for the image database. It allows to face problems raised
by image database browsing and more specifically handle the “page zero”. It allows
computing the optimal number of clusters in the dataset. It assigns outliers and ambigu-
ous image signatures to a noise cluster, to prevent them from biasing the categorization
process. Finally, it uses an appropriate distance to retrieve clusters of various shapes
and densities.
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