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ABSTRACT

We present a machine-learning based method for the explo-
ration of remote sensing data. Our framework mixes an intu-
itive interface and a one-class support-vector machine to look
for rare patterns in satellite images. It benefits from a fast
implementation on the Graphics Process Unit that allows rea-
sonable times for system-user interactions. We validate our
approach with ground-truth experiments and demonstrate the
method on real-world datasets. We achieve faster computa-
tions when compared with sequential implementations of the
same methods (up to 80 times faster for feature extraction)
and with other classification methods (such as local distribu-
tion comparison).

Index Terms— Remote sensing, Machine learning, Sup-
port vector machines, Image classification, Parallel program-
ming

1. INTRODUCTION

As the number and the resolution of satellite images increase,
the work of image analysts becomes more and more tedious.
A large image (greater than 100 MPixels) cannot be entirely
visualized at full resolution and must be inspected area by
area. They need tools to accelerate this process and reduce
the search area to the most promising regions.

Designing filters and classifiers that detect previously de-
fined objects is a standard manner to solving this problem.
Among these approaches, the One-Class Support Vector Ma-
chine (OC-SVM) recently became a popular way to build
such detectors [1, 2, 3] since it only requires examples of the
searched class, unlike the standard SVM that also requires
negative examples.

Now, with today’s level of detail, it becomes difficult to
maintain a wide range of filters for all the possible objects that
interest the various users. This can be linked to the page zero
problem in information retrieval [4]: how does one start his
exploration of an unknown dataset ? Multi-class classification
is a possible answer [5], but it does not take into account what
the user has in mind. An interactive framework better suits
this purpose: for example in [6], the user defines his query by
giving positive and negative examples in the image.

Our approach is also interactive, but intead of looking for
positive examples (that are often scarce: camps in deserted ar-
eas, man-made structures in the countryside, boats in coastal
waters, etc.), we propose to interactively define what the user
is not looking for. OC-SVM is then used for anomaly de-
tection, unlike previous systems. Online processing is made
possible by a novel implementation using the computational
power of Graphics Process Units (GPUs) to accelerate both
feature extraction and classification.

In the rest of the paper, the feature extraction and classi-
fication parts of our approach are described in section 2. We
show experimental results on real data in section 3 and give
concluding remarks in section 4.

2. ONE-CLASS SVM EXPLORATION

2.1. Fast Feature Extraction

First the system computes features that characterize the lo-
cal appearance of the image: phase, energy and orientation.
Local orientation encodes the geometric information of the
signal, whereas energy represents the information about the
local luminance and contrast. Phase can be used to differenti-
ate between diverse local structures independently of light or
scale change.

These features are low-level primitives that can be ex-
tracted using convolution-based operations with spatial fil-
ters, like Gabor or Gaussian derivatives. They have been used
in many remote sensing tasks such as edge detection or im-
age segmentation [7]. Diaz showed that Gaussian derivatives,
which are based on complex steering filters, are particularly
suitable for a parallel implementation [8]. A steering filter is
a particular class of filters such that a filter of arbitrary orien-
tation can be synthesized as a linear combination of a set of
basis filters [9], i.e. for a complex filtering at orientation 6:

(I* h9) = 09($7y) +J- 39(x7y) (1)
= > ks(0)Go(w,y)+5 Y le(0)Hy(,)
¢ ¢

where G (z, y) denotes gaussian derivative filters and Hy(z, y)
the Hilbert transforms of gaussian derivatives. Thus, we com-
pute filter outputs for § = kx7/N,0 < k < N, (N = 8) and
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Feature extraction can be hugely accelerated by a par-
allel processing of the image pixels. Diaz’tricks for paral-
lelizing the computations are also usable on GPU: we avoid
square-root computations by replacing amplitude by energy
and avoid cross-dependencies by approximating the formu-
las. The features are finally implemented using:
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2.2. One-class SVM Detection

Given an image and its local descriptors, our system processes
online classification as follows. The user defines a region of
low-interest by selecting areas using our GIS-like system Par-
adisSAT. The system then uses the features computed on these
areas as training data for OC-SVM and learns the distribution
model of the appearance of the image in the given area. The
resulting classifier is then applied to the whole image, and re-
gions that do not follow this distribution can be considered
as anomalous, so are highlighted for exploration by a human
image analyst.

One-Class SVM [10] is an adaptation of the standard two-
class Support-Vector Machine (SVM) to the one-class classi-
fication problem. It has notably been used for document clas-
sification and retrieval [11]. In a nutshell, it uses all given
samples for forming the first training class and treats the ori-
gin as the only member of the second class. Then, after trans-
forming the features with a kernel, usual SVM techniques are
employed.

Using the LIBSVM implementation [12] of OC-SVM,
we identified the time-consuming functions of the algorithm.
Scalar-product computations, though a fast operation per
se, become the main bottleneck when frequently executed.
This is primarily true during the classification of the (large)

whole image, while the relatively small areas used for train-
ing ensure reasonable training times. We propose a fast
classification step using the GPU.

Let ® : X — H be the kernel map which transforms
the feature samples in a high-dimension space, and introduce
the kernel function k(x;,z;) = (®(z;), ®(z;)). The classi-
fication of an unknown pixel z is then performed using the
prediction rule defined by the support vectors x;:
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where the weights w; and the bias p result from the SVM
optimization. The trick for acceleration is to invert the sum
over the pixels and the sum over the support vectors, of which
there are far fewer. Thus, we compute kernel products with
one support vector in parallel for all pixels, then sum up the
results to obtain the classification map.

3. EXPERIMENTS AND RESULTS

3.1. Acceleration of computation times on large images

Fig. 1 shows the ratio between computation times on the stan-
dard sequential processor and after parallelization on GPU.
Times are dramatically reduced by using the GPU implemen-
tation: by a factor 80 on average for feature extraction, and
by a factor 6 for SVM classification, depending on the im-
age size. For a 25-MPixel image, feature generation takes 4s
and classification takes around 3min on GPU, while 4min and
20min respectively on CPU.

The various plateaux on the graphs emphasize a last bot-
tleneck: the maximum number of pixels that can be loaded
simultaneously on the GPU memory of size wgpy * hgpu-
If the image size w;y, * h;,, exceeds this limit, the image has
to be divided in ((w;m%wepy + 1) * (him%hapy +1) +1)
areas that have to be loaded sequentially.

3.2. Comparison of classification approaches.

For comparison’s sake, we also implemented on GPU a stan-
dard classification method that compares the local appearance
distribution of the image to the user-defined area appearance.
More precisely, our baseline is as follows:

e Image features are quantized into a few homogeneous
clusters by the k-means algorithm.

e Distribution of features in the user-selected area A is
estimated by a histogram P4 computed with respect to
the adapted quantization.

e The whole image is classified by:

— moving a sliding window W over it;

— estimating the local quantized histogram Pyy;
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Fig. 1. Ratios of computational times using either standard CPU implementation in C or GPU implementation in CUDA for (a)

feature extraction and (b) classification using OC-SVM.
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Fig. 2. Time comparison between OC-SVM and standard
Kullback-Leibler divergence between local appearance distri-
butions (KL div.).

— comparing it to the user area using the Kullback-
Leibler divergence:
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Fig. 2 shows GPU-computation times of both methods for

various image sizes: OC-SVM is 3 to 8 times faster than the

appearance-distribution comparison. Moreover, the plateau

over 36 MPixels shows it is not limited by the sliding-window
approach and fully benefits from GPU-parallelization.

3.3. Detection results

True urban areas | False non-urban areas

False urban areas

77.62% 7.76% 14.62%

Table 1. Classification rates for urban area detection.

Fig. 3 shows an urban area detection scenario on a 4, 456 *
4,465 QuickBird image. Even with a small training area, the
system is able to learn statistics on the whole image and re-
trieve the urban areas. In particular the public gardens and
non-built-up areas inside the town are correctly classified as
non-structured areas. We manually annotated ground-truth on
this image. Table 1 shows our approach obtains a good clas-
sification rate of near 80% with few missed areas.

4. CONCLUSION

In order to provide image analysts with tools that help them
explore remote-sensing data, human-centered mechanisms
are required. With this in mind, we presented a framework
that uses a One-Class Support-Vector Machine for learning
and classifying image areas. Unlike previous approaches,
it does not apply classifiers trained offline to detect specific
objects of interest. It learns online what is not interesting, and
focuses the attention on the potentially interesting areas. Fast
interaction times are obtained by GPU-processing.

Our approach is promising since it makes the most of OC-
SVM (that can be tuned for avoiding missed detections) for
parsing large volumes of data, and relies on human aptitudes
for a fine interpretation.



(a) Original

(b) Urban-area detection

Fig. 3. Urban-area detection process. (a) The original QuickBird image and the selected area of non-interest (blue square). (b)
Detection results (white mask).
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