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Abstract

Content-based image retrieval can be dramatically im-
proved by providing a good initial database overview to the
user. To address this issue, we present in this paper the
Adaptive Robust Competition. This algorithm relies on a
non-supervised database categorization, coupled with a se-
lection of prototypes in each resulting category. In our ap-
proach, each image is represented by a high-dimensional
signature in the feature space, and a principal component
analysis is performed for every feature to reduce dimension-
ality. Image database overview is computed in challenging
conditions since clusters are overlapping with outliers and
the number of clusters is unknown.

1. Introduction

Content-based Image Retrieval (CBIR) aims at index-
ing images by automatic description, which only depends
on their objective visual content. The purpose of brows-
ing is to help user to find his target by providing first the
best overview of the database. We propose to categorize the
database and then to choose a key image for each category.
This summary can be used as an initial overview.

The categorization is performed in the image signature
space. The main issues of the problem are the high dimen-
sionality of this feature space, the unknown number of natu-
ral categories in the data, and the variety and the complexity
of these categories, which are often overlapping.

A popular way to find partitions in complex data is to
use prototype-based clustering algorithms. The fuzzy ver-
sion (Fuzzy C-Means [1]) has been constantly improved for
twenty years, by the use of the Mahalanobis distance [6], the
adjunction of a noise cluster [3] or the competitive agglom-
eration algorithm [5] [2]. Specific algorithms have been de-
veloped for the categorization [8] [4] and the browsing [11]
of image databases.

This paper is organized as follows.
�
2 presents the back-

ground of our work. Our method is presented in
�
3. The re-

sults on image databases are discussed and compared with
other clustering methods in

�
4,
�
5 summarizes our conclud-

ing remarks.

2. Background

The Competitive Agglomeration (CA) algorithm [5] is a
fuzzy partitional algorithm which does not require the num-
ber of clusters to be specified, which is here unknown. Let�������	��

���������������������

be a set of
�

vectors represent-
ing the images. Let � ����� ��
"!#�$�%���&�����(')���

represents
prototypes of the

'
clusters. CA minimizes the following

objective function :
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With the constraint :
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In (1),
; 9 4 � � �<� �=7 stands for the distance from an image

signature
� �

to a cluster prototype
� �

(for spherical clusters,
Euclidean distance will be used) and 5 ��� is the membership
of

� �
to a cluster

!
. The first term is the standard FCM ob-

jective function [1] : the sum of weighted square distances.
The second term leads to reduce the number of clusters. By
minimizing both terms simultaneously, the data set will be
partitioned in the optimal number of clusters while clus-
ters will be arranged in order to minimize the sum of intra-
cluster distances.

Membership can be written as :

5NMPO � 5NQ ,1RMPO S 5NT �3U MMPO �
(3)

with

5
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and

5
T �3U MM:O � @; 9 4 � O �<� M 7N[ � M >
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where the cardinality of a cluster is defined by� M � Z 2��/10 465 M � 7 . The first term in equation (3) is the mem-
bership term in FCM algorithm and takes into account only
relative distances to the clusters. The second term leads to a
reduction of cardinality of spurious clusters, which are dis-
carded if their cardinality drops below a threshold. So only
good clusters are conserved.@

should provide a balance [5] between the two terms of
(1), so

@
at iteration ^ is defined by :
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The exponential factor makes the second term prepon-
derant in a first time to reduce the number of cluster, and
then the first term dominates to seek the best partition of the
data.

3. Adaptive Robust Competition (ARC)

3.1. Dimensionality Reduction

We have computed a signature space for the Columbia
Object Image Library [9] (a 1440 gray scale image database
representing 20 objects shot every 5 degrees). This feature
space is high-dimensional and contains three signatures :

1. Intensity distribution (16-D) : the gray level histogram.

2. Texture (8-D) : the Fourier power spectrum is used to
describe the spatial frequency of the image [10].

3. Shape and Structure (128-D) : the correlogram of edge-
orientations histogram (in the same way as color cor-
relogram presented at [7]).

To prevent the clustering to be computationally expen-
sive, a principal component analysis is performed to reduce
the dimensionality. For each feature, only the first principal
components are kept.

3.2. Adaptive Competition@
is the weighting factor of the competition process. In

equation 6,
@

is chosen according to the objective function
and has the same value and effect for each cluster. Though,
during the process,

@
influences the computation of mem-

berships in equations (3) and (5). The term 5 T �3U MMPO appreci-
ates or depreciates the membership 51MPO of data point

� O to

cluster g according to the cardinality of the cluster. This will
cause this cluster to be conserved or discarded respectively.

Since clusters have different compacities, the problem is
to attenuate the effect of 5 T ��U MMPO for loose clusters, in order
to not discard them too rapidly. We introduce an average
distance for each cluster g :

;%9hji<k 4 g 7 � Z 2�3/10 465NM �:7 9 ; 9 4 � � �<� M 7Z 2�3/10 465NM �:7 9 I
J=Kl�Dm g m`'
(7)

And an average distance for the whole set of signatures :
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Then,
@

in equation (5) is expressed as :

@ M 4 ^ 7 � ; 9hji�k; 9hji<k 4 g 7 @ 4 ^ 7 I
J=Kl�nm g m`' (9)

The ratio
; 9hji�k W ; 9hoi�k 4 g 7 is lesser than 1 for loose clusters,

so the effect of 5 T �3U MM:O is attenuated : cardinality of cluster is
slowly reduced. On the contrary,

; 9hji<k W ; 9hji�k 4 g 7 is greater
than 1 for compact clusters, so memberships to these clus-
ters are augmented, and their cardinality is increased : they
are more resistant in the competition process. Hence we
build an adaptive competition process given by

@ M=4 ^ 7 for
each cluster g .
3.3. Robust clustering

A solution to deal with outliers and data points with am-
biguous memberships is to capture such signatures in a sin-
gle cluster [3]. Let this noise cluster be the first cluster, and
let define a virtual noise prototype

� 0
such as :p � ;%9 4 � � �<� 0q7 �`r 9

(10)

Then the objective function (1) has to be minimized un-
der the following constraint :s Distances for the good clusters

!
are defined by :; 9 4 �t�(�<�u� 7 � 4 �t� > � � 7:v?w � 4 �t� > � � 7 I
J=KDxymz!{m`'|�

(11)
where

w �
are positive definite matrices. If

w �
are iden-

tity matrices, then the distance is Euclidean distance,
and the prototypes of clusters

xym�!}m{'
are :

� � � Z 2��/B0 4E5 ���:7 9 � �Z 2�3/10 465 ��� 7 9 (12)

s For the noise cluster
!y�~�

, distance is given by (10).



The noise distance
r

is computed as the average of dis-
tances between image signatures and good cluster proto-
types : r 9 ��r 9a Z ,�(/ 9 Z 2�3/10 ; 9 4 �	�(�<� � 7� 4 ' > � 7 (13)

The noise cluster is then supposed to catch outliers that are
at an equal mean distance from all cluster prototypes. The
factor

r�a
is an initialization factor, and can be used to en-

large or minimize the size of the noise cluster, though in the
results that will be presented,

rqaL�H�
.

3.4. Choice of distance for good clusters

What would be the most appropriate choice for (11) ?
The image signatures are composed of different features
which describe different attributes. The distance between
signatures is defined as the weighted sum of partial dis-
tances for each feature

�nm�IHm��
:

; 4 �	�(���u� 7 � Q.� /B0%� ��� � ; � 4 �t�(�<�u� 7 (14)

Since the natural categories in image databases have var-
ious shapes (the more often hyper-ellipsoidal) and are over-
lapping, Euclidean distance is not appropriate. So the Ma-
halanobis distance [6] is used to discriminate image signa-
tures. For clusters

x�m�!`m`'
, partial distances for featureI

are computed using :; � 4 �	�(�<� � 7 �H
 '��(� � 
 0(�:��� 4 �t��� � > � ��� � 7:v ')� 0�(� � 4 �	�6� � > �u�(� � 7
(15)

where
�t��� � and

�u�(� � are the restrictions of image signatures�	�
and cluster prototype

� �
to the feature

I
. � � is the di-

mension of the subspace corresponding to feature
I

.
'��(� �

is the covariance matrix of cluster
!

for the feature
I

:

' ��� � � Z 2��/B0 4E5 ��� 7 9 4 �t��� � > � ��� � 7 4 �t��� � > �u��� � 7 vZ 2�3/10 465 ���P7 9 (16)

3.5. Normalization of features

The features have different orders of magnitude and dif-
ferent dimensions, so the distance cannot be a simple sum
of partial distances. The idea is to learn the weights � ��� � in
equation (14) during the clustering process. Ordered Weight
Averaging [12] is used, as proposed in [4].

First, partial distances are sorted in ascending order. For
each feature

I
, the average rank of corresponding partial

distance over images is obtained :

�|���&���� � � ����. �3/10 x 4 � > K=� � ^ 4 ; � 4 � � �<� �=7�7<7� 4 � S � 7 (17)

And the weight at iteration ^���� is updated using :

�|���d���� � � �|��� � 0 ���� � S x 4 � > K � 7� 4 � S � 7 (18)

In this process : 1) Features are normalized. 2) Similar im-
ages according to a single feature (i.e. which have a small
partial distance) are clustered together since the weight of
this feature will be increased.

3.6. Algorithm outline

Fix the maximum number of clusters
'

.

Initialize randomly prototypes for
x)m�!}m�'

.

Initialize memberships with equal probability for each
image to belong to each cluster.

Initialize feature weights uniformly for each clusterx)mA!�m{'
.

Compute initial cardinalities for
x)m�!}m`'

.

Repeat

Compute covariance matrix for
x$m�!�mz'

and
feature subsets

�nm`I$m{�
using (16).

Compute
; 9 4 � � ��� �=7 using (10) for

!)�H�
and (15)

for
xym�!�m{'

.

Update weights for clusters
x�m�!�m '

using
(18) for each feature.

Compute
@ �

for
��m{!¡m~'

using equations (9)
and (6).

Compute memberships 5 ��� using equation (3) for
each cluster and each signature.

Compute cardinalities
� �

for
xymA!�m�'

.

For
x¢m£!Hm¤'

, if
�n��¥�¦<§ KX¨ g §©J«ª ; discard

cluster
!
.

Update number of clusters
'

.

Update the prototypes using equation (12).

Update noise distance
r

using equation (13).

Until (prototypes stabilize).

4. Results and discussion

ARC is compared to two other clustering algorithms :
the basic CA algorithm presented in

�
2 and the Self-

Organization of Oscillator Network (SOON) algorithm [4].
The categorization is performed on the three features.

For each category, a prototype is chosen according to the
following steps : First, the average value of each feature is



Table 1. comparison of the results of the clus-
tering methods with the ground-truth

ARC SOON CA
mass of mis-categorized images

x«¬®­ ¯�°®­ ¯�±%­
noise cluster mass

¬u­ x�²�­ � ­

Figure 1. Summary with ARC.

computed over image ; Then the average of all images de-
fines a virtual prototype ; The real prototype is the nearest
image to the virtual one.

The three summaries are presented on figures (1), (2) and
(3). Almost all the natural categories are retrieved with the
three methods. But with SOON or CA algorithms, some
categories are split in several clusters, so prototypes are re-
dundant. Our method provides a better summary with less
redundancy.

Then, since the CA algorithm has no cluster to collect
ambiguous image signatures, the clusters are noisy. With
both ARC and SOON algorithms, noise signatures are put
in a separate cluster, so clusters considered as good have
quite no noise. With the SOON algorithm, more than one
quarter of the database is considered as noise (table 1). It
leads to have really good (i.e. without noise) clusters, but
the drawback is that cluster are small, and contain not more
than the third of the natural category : so they do not provide
a good representation of the database. Our method puts only
the ambiguous images in the noise cluster, and finds almost
all the images of the natural category.

5. Conclusion

We have presented a new unsupervised and adaptive
clustering algorithm to categorize image databases. When
prototypes of each category are picked and collected to-
gether, it provides a summary for the image database. It
allows to face the problems raised by image database brows-
ing and more specifically handle the “page zero” one. It al-
lows to compute the optimal number of clusters in the data-
set. It collects outliers and ambiguous image signatures in
a noise cluster, to prevent them from biasing the catego-
rization process. Finally, it uses an appropriate distance to

Figure 2. Prototypes of clusters with SOON.

Figure 3. Prototypes of clusters with CA.

retrieve clusters of various shapes and densities.
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