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ABSTRACT

In this paper, we address the task of semantic labeling of mul-
tisource earth-observation (EO) data. Precisely, we bench-
mark several concurrent methods of the last 15 years, from
expert classifiers, spectral support-vector classification and
high-level features to deep neural networks. We establish
that (1) combining multisensor features is essential for re-
trieving some specific classes, (2) in the image domain, deep
convolutional networks obtain significantly better overall per-
formances and (3) transfer of learning from large generic-
purpose image sets is highly effective to build EO data classi-
fiers.

Index Terms— Remote sensing, Image classification,
Pattern analysis, Neural networks

1. INTRODUCTION: URBAN CLASSIFICATION

The study of urban centers using Earth-Observation (EO) data
has a lot of potential users and applications, from urban man-
agement to flow monitoring, and in the meantime offers great
challenges: numerous and diverse semantic classes, occulta-
tions or bizarre geometries due to the image-capture angle
and the ortho-rectification. Semantic labeling consists in au-
tomatically building maps of geolocalized semantic classes.
It evolved with both the resolution of data and the availability
of labeled data. The contribution of resolution is straightfor-
ward: with more details, new potential semantic classes can
be distinguished in the images: from roads and urban areas to
buildings and trees. Then image description evolved from tex-
tures to complex features which allow object modelling [1, 2].
Meanwhile, labeled datasets allowed a rigorous validation of
algorithms and the development of statistically-based meth-
ods for multi-class urban classification [3, 4]. More recently,
very large training sets were used to train deep networks [5],
for example based on convolutional networks [6].

Despite these impressive advances, semantic labeling still
faces unsolved problems: which method is best suited for
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Fig. 1. grss dfc 2015 for data fusion: (a) orthophoto tile
at 5cm-resolution along with (b) the corresponding DSM at
10cm-resolution (derived from LiDAR). (c) is the label map
corresponding to the ground truth we built.

a given class ? Is it possible to build a classifier which is
generic enough to handle a large variety of labels ? Semantic
classes may have really diverse structures, from large, loose
areas (i.e. vegetation areas) to rigid, structured objects (such
as cars, street furniture, etc.). Actually, with the advent of
very-high resolution (VHR) images, the latter becomes more
and more frequent.

The VHR multi-sensor dataset provided in the framework
of the IEEE GRSS Data Fusion Contest provides us with a
large variety of semantic classes. In this study, we use it as
the benchmark needed by the EO community for rigorously
assessing and comparing the various approaches that coexist.
For this purpose, we built up a ground truth with 8 classes
(cf. Section 2) that we propose to make available. We im-
plemented and tested various approaches ranging from expert
and sensor-based baselines to powerful machine-learning ap-
proaches, aiming at both pixel-wise and object-wise classifi-
cation (cf. Section 3). Their respective performances can be
evaluated and compared (cf. Section 3.6) showing which ones
are best suited for some specific applications and which ones
are overall winners that could be used for generic purposes.

2. BENCHMARK

Dataset and ground truth. The IEEE GRSS DFC Zeebrugge
dataset ([7], referenced in the following as: grss dfc 2015)
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Fig. 2. Images from the grss dfc 2015 dataset. Middle image
#5 contains almost all the semantic classes of Table 1 and
belongs to the training set. In the test set, image #3 contains a
harbour zone and image #6 contains a large residential area.

contains 7 orthorectified tiles, with the following data:
- a 10000x10000 pixel-sized color orthophoto (RGB, 5cm-

resolution).
- a max 5000x5000 pixel-sized Digital Surface Model (DSM)

at 10cm-resolution.
- a LiDAR 3D-point cloud in XYZI format [containing X (lat-

itude), Y (longitude), Z (elevation), and I (LiDAR intensity)
information].

In addition, we manually built a ground truth (cf. Fig. 1) with
semantic labels summarized in Table 1.

Evaluation. We perform cross-validation on the dataset
to assess the various methods. We retain images {1, 5, 7} for
training and images {3, 6} for testing. They are chosen for
ensuring a good representation of all classes in both sets: for
example, image 5 is the most representative of the semantic
classes with harbour and residential areas, while image 3 con-
tains a harbour zone and image 6 contains a large residential
area (cf. Fig. 2).

Pixel-wise classification is evaluated using the confusion
matrices for each image. We count (for each class or over the
test set) the number of true positive pixels tp, the number of
false positives fp, the number of false negatives (or miss) fn.
We then derive different standard measures for each class:
precision (= tp/(tp+ fp)), recall (= tp/(tp+ fn)), and the
F1-score (= 2 · Precision · Recall/(Precision + Recall)). We
also compute the overall accuracy (= (tp+tn)

(total number of pixels) ) and

Cohen’s Kappa (= p(a)−p(e)
1−p(e) , where p(a) is the observed ac-

curacy and p(e) the expected accuracy), computed using the
confusion matrix.

Table 1. Ground truth classes for semantic labeling (with
class proportion over grss dfc 2015).

Impervious surface Building Low vegetation Tree
33.6 % 8.2 % 10.8 % 2.0 %

Car Clutter Boat Water
0.5 % 7.8 % 0.7 % 28.7 %

3. ALGORITHMS AND BASELINES

We test several approaches for classification, from hand-
crafted heuristics to learning algorithms based on raw data or
carefully-designed image descriptors.

3.1. Expert baselines

When possible, we build label-specific baselines. Most of
them are single-channel filters on RGBd data. The water
classifier checks if d < 45.4m. The building classifier
checks if d > 50.5m. The road classifier (for impervi-
ous surfaces) look for gray pixels below a given depth:
max(R,G,B) − min(R,G,B) < 6 and d < 52m. As-
suming that most LiDAR systems for land observation have
near-infrared (NIR) wavelengths, we projected the intensity
from the LiDAR point-cloud to create pseudo-NIR images.
We then computed the normalized difference vegetation in-
dex (NDVI) using (NIR − R)/(NIR + R) and fixed the
threshold at 0.6.

3.2. SVM on raw data

As a simple baseline, we train a Support-Vector Machine
(SVM) on raw data. Various inputs are considered: RGB
values of image pixels, RGBD values by adding the DSM,
and RGBID values, where I is a pseudo-infrared derived from
the Lidar intensities. One SVM is trained for each class in
a one-vs.-all manner, using a Radial-Basis-Function (RBF)
kernel with internal parameters optimized by grid-search. To
prevent an explosion of the computational costs, classification
is performed on the averaged value of superpixels computed
using efficient graph-based segmentation [8].

3.3. SVM on complex features

We tested two approaches for high-level feature extraction.
1. In the spatial-spectral domain: patches (16×16 or 32×32)

are extracted, indexed with Histograms of Oriented Gradi-
ents (HOGs) (implemented as in [9]) and given the dom-
inant label. We then train several RBF-kernel SVMs in
one-vs.-all set-ups with optimal parameters found by grid-
search. At classification, we apply the classifier using a
standard sliding window approach and smooth the result-
ing map.

2. Using multisource information: superpixels are computed
on the image, then described by HSV-color histograms
combined with the averaged value and averaged gradient of
the DSM. The classifier is learned by a linear SVM.

3.4. Object-based detectors

We also tested 2 methods for object-oriented detection.
1. (Discriminatively-trained Model Mixtures) improve the

work of [2] based on Discriminatively-trained Part Models
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Fig. 3. Comparison of classification maps for image #3 (first row) and #6 (second row) of grss dfc 2015, with respect to the
ground truth (GT): (experts/obj.) experts and object classifiers combined on a single map, (RGBID) superpixels classified by
SVM with RBF kernel, (HOG32/SVM) HOG features with RBF-SVM, (HSV+Dgrad) features computed on superpixels and
classified with linear SVM, (RGB Caffe), (RGB VGG) and (RGBD VGG) CNN-features with linear SVM.

Table 2. Method comparison: F1 measures per class (best: , second: , third: ), overall accuracy and Cohen’s Kappa.
Algorithm Imp. Build. Low Tree Car Clutter Boat Water Overall Cohen

surf veg. acc. % κ

Expert 58.97 63.87 74.55 92.39 ∅ ∅

RGB 53.89 53.53 50.32 32.97 24.02 13.75 12.12 98.52 60.77 0.52
RGBD 14.51 67.79 38.03 27.43 7.15 1.12 14.58 98.45 50.76 0.41
RGBID 60.86 69.01 57.12 38.12 11.59 20.49 15.04 94.42 63.83 0.56

HOG32/SVM 28.94 43.17 48.77 27.32 30.24 17.39 12.61 88.02 52.45 0.41
HOG16/SVM 39.52 38.45 35.65 29.99 21.93 16.13 13.52 80.02 49.4 0.36
HSV/SVM 71.60 46.97 68.38 0.12 0.00 13.71 0.00 92.14 70.16 0.60
HSV+Dgrad/SVM 73.30 70.85 68.75 0.17 0.00 17.11 0.00 92.37 73.60 0.65

SOM 51.45 ∅ ∅
DtMM 48.46 ∅ ∅

RGB OverFeat/SVM 55.86 63.34 59.48 64.44 36.03 28.31 41.51 92.07 67.97 0.59
RGB Caffe/SVM 62.32 62.66 63.23 60.84 31.34 32.49 46.57 95.61 71.06 0.63
RGB VGG/SVM 63.18 64.66 63.60 66.98 31.46 43.68 51.92 95.93 72.36 0.64
RGBD VGG/SVM 66.02 74.26 65.04 66.94 32.04 44.96 50.61 96.31 74.77 0.67
RGBD+ VGG/SVM 67.66 72.70 68.38 78.77 33.92 45.6 56.10 96.50 76.56 0.70

[9]. The model of an object category consists in a mixture
of discriminative models trained on visually homogeneous
data: object samples are clustered on the basis of the visual
appearance and for each cluster a linear SVM is trained on
HOGs computed on these samples.

2. The second object detector is based on Self-Organizing
Maps (SOM): it learns an optimal color table for the images
that can be used for segmenting the test images. Semantic
labels are associated to SOM outputs on the training set,
and derived from SOM classification maps.

3.5. Convolutional neural networks and SVM

In recent years, convolutional neural networks (CNN) have
achieved the best performances on various benchmarks (e.g.

everyday-image classification [10]). It has been experimented
that the outputs of the intermediate layers of these deep net-
works could be efficiently used as features [11]. We use three
different implementations of CNN trained on ImageNet [12]
that we cut before the soft-max layer: VGG (5 convolutional-
layer fast network [13]), OverFeat (the fast network of 6
conv. layers, no drop-out) [14] and Caffe (the network has 5
conv. layers [10]). We generate features on 231 ∗ 231 patches
extracted from the training images by a sliding window ap-
proach (step of 32 pixels) and train a linear SVM with respect
to our 8 classes. At testing, the same sliding window is used,
and the resulting label is given to the central 32 ∗ 32 square
of the patch. Moreover, we test the contribution of LiDAR.
We apply VGG to the DSM, and trained a linear SVM over
the concatenated output of RGB and depth networks. We



use either the given DSM (RGBD) or a more precise DSM
(RGBD+) obtained by projecting height from the LiDAR
point-cloud.

3.6. Results and analysis

In Fig. 3 we show the classification maps along with the
ground truth, while Table 2 summarizes the performance
measures for each class and overall. The use of superpixels
introduce spatial constraints that are visually rewarding on
classification maps, especially in dense urban environment
(Fig. 3). Multisource information is a key to success: the
two best approaches combine image and DSM. Working on
images only, deep neural networks are solid candidates for
building generic EO data classifiers. In Table 2, they often
outperform the other baselines and get consistent results over
the 8 labels, with a bonus for not-so-deep networks (5 layers)
that are less specialized. The next question is how to use
these neural networks in EO data context: either by trans-
fering learning from large everyday-image datasets (as was
performed here) or by retraining ? Finally, old recipes are
still competitive on specific challenges (cf. Table 2): NIR
information is crucial for vegetation, while depth and col-
orimetry are meaningful for buildings and water respectively.
Moreover object-oriented methods perform well on the task
they are designed for: While objects do not count for much
in pixel proportion (cf. Table 1), they have a high interest in
some critical applications.

4. CONCLUDING REMARKS

In this paper, we established a ground truth for semantic la-
beling associated with the grss dfc 2015 data that we pro-
pose to make available to the community. We tested vari-
ous state-of-the-art approaches for urban classification on this
challenging benchmark. The main outcomes are that: (1)
multisource combination is highly relevant for some specific
urban classes; (2) as a generic all-purpose classifier, deep con-
volutional networks obtain significantly good performances;
and (3) transfer of learning from large generic-purpose image
sets is highly effective to build EO data classifiers.

Aknowledgement
The authors would like to thank the Belgian Royal Military
Academy for acquiring and providing the data used in this
study, and the IEEE GRSS Image Analysis and Data Fusion
Technical Committee.

5. REFERENCES

[1] J. Leitloff, S. Hinz, and U. Stilla, “Vehicle detection in
very high resolution satellite images of city areas,” IEEE
Trans. on Geosci. Remote Sens., vol. 48, no. 7, 2011.

[2] H. Randrianarivo, B. Le Saux, and M. Ferecatu, “Man-
made structure detection with deformable part-based
models,” in Int. Geosci. Remote Sens. Symp., 2013.

[3] M. Fauvel, J. Chanussot, and J.A. Benediktsson, “Deci-
sion fusion for the classification of urban remote sensing
images,” IEEE Trans. on Geosci. Remote Sens., vol. 44,
no. 10, pp. 2828–2838, 2006.

[4] D. Tuia, F. Pacifici, M. Kanevski, and W.J. Emery,
“Classification of very high spatial resolution imagery
using mathematical morphology and support vector ma-
chines,” IEEE Trans. on Geosci. Remote Sens., vol. 47,
no. 11, pp. 3866–3879, 2009.

[5] V. Mnih and G. Hinton, “Learning to detect roads in
high-resolution aerial images,” in Proc. of Eur. Conf.
Comp. Vis., 2010.

[6] A. Romero, C. Gatta, and G. Camps-Valls, “Unsuper-
vised deep feature extraction of hyperspectral images,”
in Proc. of WHISPERS, 2014.

[7] 2015 IEEE GRSS Data Fusion Contest, “Online:
http://www.grss-ieee.org/community/
technical-committees/data-fusion,” .

[8] P.F. Felzenszwalb and D.P. Huttenlocher, “Efficient
graph-based image segmentation,” Int. J Comp. Vis.,
vol. 59, no. 2, pp. 167–181, 2004.

[9] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan, “Object detection with discriminatively trained
part-based models,” IEEE Trans. Patt. An. Mach. Int.,
vol. 32, no. 9, pp. 1627–1645, 2010.

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe:
Convolutional architecture for fast feature embedding,”
arXiv preprint arXiv:1408.5093, 2014.

[11] Jason Yosinski, Jeff Clune, Geoffrey Hinton, and Hod
Lipson, “How transferable are features in deep neural
networks?,” in Proc. of NIPS, 2014, pp. 3320–3328.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “ImageNet: A Large-Scale Hierarchical Image
Database,” in Proc. of Comp. Vis. and Patt. Rec., 2009.

[13] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisser-
man, “Return of the devil in the details: Delving deep
into convolutional nets,” in Brit. Mach. Vis. Conf., 2014.

[14] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fer-
gus, and Y. LeCun, “Overfeat: Integrated recogni-
tion, localization and detection using convolutional net-
works,” in Proc. Int. Conf. on Learning Rep., 2014.

http://www.grss-ieee.org/community/technical-committees/data-fusion
http://www.grss-ieee.org/community/technical-committees/data-fusion

	 Introduction: urban classification
	 Benchmark
	 Algorithms and baselines
	 Expert baselines
	 SVM on raw data
	 SVM on complex features
	 Object-based detectors
	 Convolutional neural networks and SVM
	 Results and analysis

	 Concluding remarks
	 References

