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Abstract

In this work, we describe a new, general, and efficient method for unstructured point cloud labeling. As the question of efficiently
using deep Convolutional Neural Networks (CNNs) on 3D data is still a pending issue, we propose a framework which applies
CNNs on multiple 2D image views (or snapshots) of the point cloud. The approach consists in three core ideas. (i) We pick
many suitable snapshots of the point cloud. We generate two types of images: a Red-Green-Blue (RGB) view and a depth
composite view containing geometric features. (ii) We then perform a pixel-wise labeling of each pair of 2D snapshots using
Sfully convolutional networks. Different architectures are tested to achieve a profitable fusion of our heterogeneous inputs. (iii)
Finally, we perform fast back-projection of the label predictions in the 3D space using efficient buffering to label every 3D
point. Experiments show that our method is suitable for various types of point clouds such as Lidar or photogrammetric data.

1. Introduction

The progress of 3D point cloud acquisition techniques and the de-
mocratization of acquisition devices have enabled the use of 3D
models from real world in several economic fields such as building
industry, urban planning or heritage conservation. Today’s devices,
like laser scanners or photogrammetry tools, allow the production
of very large and precise point clouds, up to millions of points,
structured or not. Meanwhile, the last years have seen the devel-
opment of algorithms and methodologies in order to reduce the hu-
man intervention for two of the most common processing tasks with
point clouds: first, surface reconstruction and abstraction, and sec-
ond, object recognition and scene semantic understanding. How-
ever, these tasks are still a pending research topic and in applied
fields, point cloud processing remains at least partly manual.

This work address the second issue: we aim at discovering the se-
mantics of the scene, i.e. recognizing various classes of objects or
content in the scene. In [BDM14], the semantic discovery of a scene
is done using grammars on a 3D reconstructed model, so that the re-
sult is very dependent on the quality of the abstract model. Here, we
adopt a different approach. Similarly to [HWS16, GKF09, LM12],
we want to extract semantic information as soon as possible in
the processing pipeline. As a matter of fact, knowing segmenta-
tion of the scene and the class of each object allows to direct the
reconstruction according to each class: model or primitive fitting,
regularity or symmetry constraints. More precisely, we aim at at-
tributing a class label to each 3D point. In the image processing
field, the similar task would be pixel wise labeling or semantic seg-
mentation. Recent work on the subject focus on the design of ef-
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Figure 1: Generation of 2D snapshots for semantic labeling in the
image space by taking random camera positions in the 3D space.

ficient 3D descriptors by taking into account the neighborhoods of
points [RHBB09,TSDS10]. We propose a different approach based
on Convolutional Neural Networks (CNNs) and particularly on
segmentation networks [LSD15, BKC15]. These networks reached
the state of the art at image segmentation on different use cases
such as KITTI [GLU12] or aerial images [ALSL16] on the ISPRS
dataset [RSJ*12]. The originality of our approach is that our own
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Figure 2: Approach work-flow.

features are simple 2D primitives: snapshots of the point-cloud.
Then, we can do the labeling in a 2D image space (figure 1) where
the segmentation networks proved to be very efficient. While the
experiments presented in this papers are outdoor scenes, our label-
ing pipeline is generic and could be applied to various scenes and
point cloud types.

Organization of the paper. The paper is organized as follows
The section 2 presents the related work on point cloud semantic la-
beling. The overview of our 4-step semantic labeling method can be
found in section 3. Then the four next sections detail the main steps
of the algorithm: section 4 explains the preprocessing of the 3D
point-cloud required to take the snapshots according to the strategy
exposed in section 5, the semantic labeling and data fusion pipeline
based on convolutional networks is exposed in section 6 and point-
cloud labeling is detailed in section 7. Finally, in section 8, we eval-
uate our segmentation method.

2. Related work

Semantic segmentation of point clouds is a well known problem in
computational geometry and computer vision. Starting in the 90’s,
it gained in interest with the democratization of acquisition devices
and reconstruction techniques [OK93]. The objective is to iden-
tify the class membership of each point. This problem is related to
the 2D semantic segmentation, where the objective is to label each
pixel of the image.

The early stages of semantic labeling for point cloud were
mainly focused on aerial laser acquisition (Lidar). The objective
was to discriminate building and roads from vegetation. A common
approach is to discretize the point cloud on a regular grid to obtain a
2.5D elevation map authorizing to use image processing algorithms
like in [HW97] where the authors use images filters or in [Maa99]
for maximum likelihood classification. Other low level primitives,
such as planes [BAvGT10], have also been used for bottom-up clas-
sification introduced in [HBA98] or [RB02].

In a more general context, low level shape extraction in point
clouds has also been investigated. The Hough transform, origi-
nally designed for line extraction, was successfully adapted to 3D
for plane extraction in [VGSRO04]. [SWKO07] proposes a generic
RANSAC algorithm for geometric shape extraction in 3D point
clouds. Hybrid shape extraction were investigated in [LKBH10,
LM12] where the surfaces which fit geometric primitives are re-

placed with the corresponding abstract model while voids remain
as triangular mesh.

Many algorithms for extraction of higher level semantic infor-
mation were published in the recent years. In urban classifica-
tion [HWS16,CGMO09], classifying small objects like cars or street
furniture [GKF09] and discriminating between roads and natu-
ral terrain become decisive at the smallest possible scale: point
level [HWS16]. Most of the semantic labeling approaches rely on
the same technique: designing the most discriminating features for
the classification task. For example, in [CML04], the authors de-
signed by hand a collection of expert features such as normalized
height or luminance. Another approach is to a create generic de-
scriptor space to represent the points and their neighborhood in or-
der to learn a supervised classifier. Among these descriptors, the
spin images [JH99], the fast point feature histograms [RHBB09] or
the signature histograms [TSDS10] may be the most popular. With
respect to these approaches, we use much more simple features: 2D
views of the point cloud.

By using a deep learning framework, it is possible to learn not
only the classifier but also the feature representation. While deep
neural networks are commonly used in image processing for classi-
fication or semantic labeling, there are only a few initiatives for se-
mantic labeling in 3D [LBF14, WSK*15]. These approaches use a
voxelization of the space to create 3D tensors in order to feed a con-
volutional neural network (CNN). However, using dense 3D repre-
sentation for sparse input data consumes a lot of GPU memory and
do not allows the use of large CNNs together with a refined voxel
representation of the space. Even though there are great initiatives
to efficiently reduce the memory cost on sparse data [Gral4], the
direct 3D labeling is hardly tractable to personal computers and
would require a whole server for training.

Apart from semantic segmentation, the application of deep learn-
ing in a 3D context knows an exponential interest, but the neu-
ral networks are mostly applied on 2D tensors. For example,
in [LGK16], a deep framework is used to compute a metric for
identifying architectural style distance between to building models.
On a shape retrieval task, the authors of [SMKLM15] take several
pictures of the 3D meshed object and then perform image classifi-
cation using a deep network. Our approach has common features
with this work: we generate snapshots of the 3D scene in order
to use a 2D CNN with images as input. But unlike [SMKLM15]
whose purpose is classification, i.e. giving a single label per 3D
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shape, we compute dense labeling in the images and back project
the result of the semantic segmentation to the original point cloud,
which results in dense 3D point labeling.

3. Method overview

The core idea of our approach consists in transferring to 3D the
very impressive results of 2D deep segmentation networks. It is
based on the generation of 2D views of the 3D scene, as is some-
one was taking snapshots of the scene to sample it. The labeling
pipeline is presented on figure 2. It is composed of four main pro-
cessing steps: point-cloud preparation, snapshot generation, image
semantic labeling and back projection of the segmentation to the
original 3D space.

1. The preprocessing step aims at decimating the point cloud,
computing point features (like normals or local noise) and gen-
erating a mesh.

2. Snapshot generation: from the mesh and the point attributes,
we generate two types of views, Red-Green-Blue (RGB) and
depth composite, by picking various camera positions (cf.
Sec. 5).

3. Semantic labeling gives a label to each pair of corresponding
pixels from the two input images. We use deep segmentation
networks based on SegNet [BKC15] and fusion with residual
correction [ALSL16].

4. Finally, we project back to 3D the semantized images. For each
point of the mesh, we select its label by looking at the images
where it is visible (cf. Sec. 7).

Point cloud properties In this work we assume our point clouds
have a metric scale such that voxelization outputs have the same
point density. We also consider as known the vertical direction to
compute the normal deviation to this vector. As presented in sec-
tion 8, it is also possible to use the pipeline without RGB informa-
tion but performances are downgraded.

4. Point cloud preprocessing

The main issue for image generation when dealing with point
clouds is the sparsity. When taking a snapshot, if the density of
the point cloud is not sufficient one can see the points behind the
observed structure. this leads to images which are difficult to un-
derstand, even for a trained human expert. To overcome this issue,
we generate a basic mesh of the scene. The figure 3 shows the kind

Figure 3: Point cloud (left) and mesh (right) seen from the same
point of view: dense representations help understanding the scene.
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(a) RGB texture.

(b) Depth composite texture.

Figure 4: Meshes for taking synthetic snapshots of the 3D scene.

of images we obtain with and without meshing. We now detail the
algorithmic steps.

PointCloud decimation Point-clouds captured with ground lasers
have varying point densities depending on the distance to the sen-
sor. So, we first decimate the point cloud and get a lighter cloud
so that subsequent processing can be applied in tractable times. To
do that, we voxelize the scene, and keep the closest point to each
voxel center (along with its class label at training time). In this pa-
per, we chose a voxel size of 0.1m. It proved to produce relatively
small point clouds while preserving most of the original features
and shapes. Stronger decimations may lead to discarding small ob-
jects. In our experiments with semantic 3D, we reduce point cloud
sizes from 20M /429M points to 0.4M /2.3M points.

Mesh generation The only a priori knowledge we have about our
point-clouds is that they have homogeneous density due to deci-
mation. For practical purposes,we chose the mesh generation al-
gorithm from [MRB09] among many standard methods.Although
it does not give any guaranty about the topology of the generated
mesh, it is not a concern for our snapshot application. It requires
as input a point-cloud with normals, which we estimate by us-
ing the available code from [BM16]. We now denote the mesh by
M = (V,F) with V the set of vertices and F the faces.

Composite colors We aim at using both color and volume infor-
mation for semantic labeling. To achieve that, we create two tex-
tures for the mesh (cf. Fig. 4). The more straightforward is the
RGB texture, which takes the original point colors (cf. Fig. 4a).
Then, we extract two generic features of point clouds: normal devi-
ation to vertical and a noise estimation at a given scale. The normal
deviation to the vertical at point p is:

normdev, = arccos(|np.v|)

where n) is the normal vector and v is the vertical vector. The noise
at a given point p is an estimation of the spread of the points in its
neighborhood.

. 2

noise, = —
p

Ao

where Ag (resp. A,) is the highest singular value (resp. the lowest)
obtained doing a principal component analysis estimation by sin-
gular value decomposition. Our depth composite texture encodes
the normal deviation on the green channel and the local noise on
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the red one. The blue channel remains empty at this point, but later
will be filled with depth (i.e. distance to the camera).

5. View generation

Once the meshes are constructed, we want to produce the
images for semantic labeling. We used an approach similar
to [SMKLM15]. We load the model in a 3D mesh viewer and gener-
ate random camera positions and orientations to take various snap-
shots.

The camera parameters are generated according to two different
strategies. First, in the random strategy, the camera center coordi-
nates are randomly picked in the bounding box of the scene, with
an altitude between 10 and 30 meters. The view direction is picked
in a 45° cone oriented to the ground. To ensure the production of
meaningful pictures, i.e. that the camera looks at the scene, we im-
pose 20% of the pixels should correspond to actual points. Second,
in the multiscale strategy, we pick a point of the scene, pick a line
which goes through the point, and generate three camera positions
on this line, oriented towards the point: thus ensuring each camera
looks at the scene at various, increasing scale (allowing more and
more details to be seen).

For each camera position, we generate three 224 x 224-pixel im-
ages, as shown on figure 5. The first one is a snapshot of the RGB
mesh (figure 5a) and reflects the real texture of the model. The sec-
ond one is the depth composite image (figure 5b), made of surface
normal orientation and noise completed with the depth to the cam-
era. In order to do the back projection efficiently, we also gener-
ate an image where the color of each face of F is unique so that
we know which face is visible (figure 5c). Finally for training or
validation purposes, when ground truth is available, we create the
corresponding label image (Fig. 5d).

6. Semantic Labeling

CNNs are feed-forward neural networks which make the explicit
assumption that inputs are spatially organized. They are comprised
of learnable convolution kernels stacked with non linear activa-
tions, e.g. ReLU (max(0,x)). Those filters perform feature extrac-
tion in order to build an internal abstract representation of the input,
optimized for later classification.

Several deep convolutional neural networks architectures exist
for semantic labeling, usually derived from the Fully Convolutional
Networks [LSD15]. Those models usually take RGB images in in-
put and infer structured dense predictions by assigning a semantic
class to every pixel of the image. In this paper, we use custom im-
plementations of two network variants with a symmetrical encoder-
decoder structure: SegNet and U-Net.

e SegNet [BKC15] is illustrated in figure 6a. The encoder part of
SegNet is based on VGG-16 [SZ14], a deep CNN with 16 layers
designed for image classification. Only the convolutional part
is kept, while the fully connected layers are dropped. The de-
coder performs upsampling using the unpooling operation. Dur-
ing unpooling, the feature maps in the decoder are upsampled by
placing the values into the positions given by the indices of the
maximum during the symmetrical pooling in the encoder.

o U-Net [RFB15]is shown in figure 6b. Also based on VGG-16 for
the encoder part, it uses a different trick for upsampling. It con-
catenates the feature maps of the decoder convolutional layers
upsampled by duplication with the symmetrical feature maps in
the encoder. Later convolutions blend both types of information.

As we extract both RGB and depth composite information from
the dataset, we want to fuse the data sources to improve the accu-
racy of the model, compared to only one source. We use several fu-
sion strategies in order to exploit the complementarity of the depth
and RGB information. Therefore, two parallel 3-channels segmen-
tation networks are trained, one on the RGB data, the other on the
composite data. The experimented strategies are the following :

e Activation addition fusion, i.e. averaging of the two models (fig-
ure 6¢). The predictions of the two SegNet are simply averaged
pixel-wise.

e Prediction fusion using residual correction [ALSLI16] (figure
6e). A very short (3 layers) residual network [HZRS15] is added
at the end of the two SegNet. It takes in input the before last fea-
ture maps and learns a corrective term to apply to the averaged
prediction.

Moreover, we also experiment early data fusion using a pre-
processing CNN that projects the two data sources into a 3-channel
common representation (figure 6d). We then use this projection as
input of the traditional SegNet.

Compared to model averaging, using a neural network to learn
how to fuse the two predictions should achieve better results, as
it will be able to learn when to trust the individual sources based

(d) Labels.

(¢) Unique face color.

Figure 5: The various products of the preprocessing and view gen-
eration step.
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Figure 6: Various segmentation networks used in this paper: single-flow networks (a,b) vs. fusion networks (c,d,e)

on the context and the classes predicted. As an example, figure 7
presents a case of interest for fusion. The RGB prediction is wrong
on the road. The network is fooled by the texture similar to the
building one. On the other hand, the depth composite predicts the
good label on the road but fails on the natural terrain where the
steep slope has the geometric attributes of a building roof.

7. 3D back projection

This section presents how we project the pixel wise class scores
obtained in section 6 on the original point cloud.

Projection to mesh. First we estimate the labels at each vertex
of the mesh used to generated the images. Thanks to the unique-
color-per-face images created at snapshot generation, we are able
to quickly determine which faces are seen in each image pair and
consequently the visible vertices of V. The score vector of the pixel
is then added to the scores of each vertex of the face. This operation
is iterated over all the images. Finally the vertex label is the class
with the highest score.

Projection to the original point cloud. The second step is to
project the labeled vertices to the original point cloud P. We adopt
a simple strategy. The label of a given point p € P is the label
of its nearest neighbor with label in V. For efficient computation,
we build a k-d tree with V, and search for nearest neighbors. This
allows not to load the whole P, and avoid extensive memory al-

Figure 7: Mono input estimates: RGB (left) and composite (right).
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location (particularly when dealing with hundreds of millions of
points).

8. Experiments

In this section, we present the results of our experiments on se-
mantic labeling of 3D point sets. We mainly experiment on the Se-
mantic 3D dataset [HSL*16](semantic3d.net). The semantic-8
dataset is composed of 30 laser acquisitions (15 for training and
15 for testing) on 10 different scenes from various places and land-
scape types (rural, suburban, urban). The ground truth is available
for the training set, and undisclosed for the test. There are 8 classes,
namely: man-made terrain (gray), natural terrain (green), high veg-
etation (dark green), low vegetation ( ), buildings (red), hard-
scape (purple) scanning artefacts (cyan), cars ( ).

For quantitative evaluation, we use the same metrics as the
dataset benchmark. It includes the overall accuracy (OA): OA =
% where |P| is the size of the point cloud, and T is the num-
ber of true positive i.e the number of points that received the good
label. We also use the intersection over union (IoU) per class:
IoU, = W’f#ﬂ where 7; is the number of points of class ¢ cor-
rectly estimated, P is the set of points with true label ¢ and FPe is
the set of points with estimated class c. Finally the global average
IoU (AloU) is defined as: foU = ﬁ YeecloUe

8.1. Architecture and parameter choice

Dataset and training. In these experiments, we defined our own
custom validation set by splitting the training set: 9 acquisitions for
training and 6 for validation. For each training acquisition, we gen-
erated 400 image pairs, so that we optimize the deep networks with
3600 samples. We used a stochastic gradient descent with momen-
tum (momentum is set to 0.9). The learning rate varies according to
a step down policy starting at 0.01. It is multiplied by 0.2 every 30
epoch. The encoder part of SegNet is initialized with the VGG16
weights [SZ14].

At testing, we generate 500 views at 3 scales. For a point-cloud
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(b) Segnet on RGB.
L4 5]

.!IL

(c) Segnet on depth comp.
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(e) Fusion before Segnet. (f) Residual correction.

Figure 8: Same prediction view for the different fusion strategies.

of 30M points, the computation times are the following (with: CPU
Xeon 3.5GHz, GPU TitanX Maxwell): pre-processing 25 min. (7
min. with normal estimation by regression); view-generation 7
min.; inference 1 min.; back-projection 8 min.; which sum up to 41
or 23 min. for the whole point-cloud semantization. Most sensitive
parameters are the number of voxels (for point-cloud decimation)
and the number of snapshots.

Fusion strategy choice. As explained in section 6, the differ-
ent natures of the input images impose to define a fusion strategy.
We quantitatively evaluate the different fusion options presented on
figure 6. The results are presented on table 1a.

As abaseline, in the first result block, we trained two mono-input
SegNets, taking as input the RGB or depth composite images. The
composite network performs globally better except on buildings for
which there is a great difference of texture compared to the rest of
the scene. Moreover, depth composite images, that only contain ge-
ometric information, are not sensible to the texture of objects, so
almost every vertical plane will be labeled as a building. This ex-
periment shows that the two inputs are complementary and that the
RGB network is not able to extrapolate the composite information
only from the image texture.

The second result block of table 1a is dedicated to fusion strate-
gies. Due to the high distribution difference in the prediction maps,
composite-only totally overcomes the RGB prediction, i.e. the
depth composite is most of the time confident while the RGB is
more hesitating. As a result, the addition of prediction scores does
not improve the results compared to depth composite only. A visual
glimpse of the phenomenon is presented on figures 8c and 8d, the
two images are almost similar.

Operating the fusion before labeling via SegNet should over-
come this issue by melting the two signals at an early stage. As
expected the results are visually improved (figure 8), particularly
on natural terrain class, where the association of the texture and ge-
ometric features is discriminatory. However, the fusion step before
SegNet is not optimal. VGG-16 takes a 3-channel image as input,
and the two convolutions added before SegNet operates a dimen-
sion reduction that may cause information loss. Moreover, the dif-
ferent nature of the input makes it uncertain that information from
both are compatible for fusion this early in the process. Finally the
best results are obtained by the residual correction network. The
compromise between the fusion after Segnet (addition) and a more
refined fusion using convolution (previous case) is successful. The
residual correction compensates the difference of the two outputs,
resulting in an increase of the performances on almost all classes.

For comparison with existing methods we confront our approach
to full semantic-8 dataset. We present the results in table 1b. The
three other methods are the publicly available results. [MZWLS14]
is method for aerial images based segmentation on images descrip-
tors and an energy minimization on a conditional random field.
In [HWS16], the authors use a random forest classifier trained on
multi-scale 3D features taking into account both surface and con-
text properties. Harris Net is not described on the result board, but
from its name, we assume a method based on 3D Harris point ex-
traction followed by a classification using a deep framework. We
present the results of two methods, SegNet with a purely random
set of images, and a U-Net with zoom on snapshot strategy. To our
knowledge the two networks performs equally and the main differ-
ence reside in the snapshot strategy. At redaction time, our U-Net
took the first place in the leaderboard for global scores, average loU
and overall accuracy. Looking at the per class IoU, we take the lead
on six out of eight categories. Among them, the performances on
natural terrain, scanning artifacts and cars are drastically increased.
On man-made terrain and buildings, we place second with a com-
parable score as [HWS16] and Harris Net. The use of the zoom
strategy greatly improves the score on cars and scanning artifacts.
The reason is that compared to the random strategy, the training
dataset (and the test dataset) contains more images with small de-
tails, which makes them possible to segment. The only relative fail-
ure of the deep segmentation networks are the scanning artifacts
and the hardscape classes. Even though we place first on these cat-
egories, the IoU score is low: we discuss this in section 8.3.

8.2. Photogrammetric point clouds

In order to evaluate the capacity of our method to be transferable,
we also experiment on photogrammetric data. The figure 9 presents
a reconstruction of Mirabello’s church destroyed after an earth-
quake in 2012 in Italy. We followed the same process as for the laser
data. The network used for semantic labeling is the one trained on
the full semantic-8 training set. The results are fairly encouraging.
Most of the visual error concentrates on ground classes and high
vegetation. A lot of ground is covered by rubble coming from the
destroyed building. Due to the chaotic structure of the debris, it is
recognized as natural terrain. Part of the rooftops are also wrongly
labeled the same way. We interpret this as a consequence of the fact
that our training set contains only ground laser acquisitions so only

(© 2017 The Author(s)
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Method AloU OA IoU1 IoU2 IoU3 IoU4 IoUS5 IoU6 IoU7 IoU8
SegNet RGB 0.28 0.749 | 0.853 0.097 0483 0.075 0.69 0.042 0.0 0.0
SegNet Depth Comp. | 0.326 | 0.763 | 0.902 0.342 0.597 0.013 0.503 0.178 0.066 0.003
SegNet add. 0.312 | 0.762 | 0.895 0.237 0.573 0.029 0.522 0.172 0.067 0.003
SegNet before 0.336 | 0.763 | 0.898 0.569 0.452 0.021 0.510 0.179 0.051 0.009
SegNet Res. 0.427 | 0.805 | 0.948 0.739 0.763 0.024 0.710 0.133 0.097 0.0
(a) Comparison of deep segmentation networks on Semantic 3D, custom test set.
Method AloU OA ToU1 IoU2 IoU3 IoU4 IoUS5 IoU6 IoU7 IoUS8
Graphical models [MZWLS14] | 0.391 | 0.745 | 0.804 0.661 0423 0412 0.647 0.124 0.000 0.058
Random forest [HWS16] 0.494 | 0.850 | 0911 0.695 0328 0.216 0.876 0.259 0.113 0.553
Harris Net 0.623 | 0.881 | 0.818 0.737 0.742 0.625 0.927 0.283 0.178 0.671
Ours SegNet Rand. Snap. 0.516 | 0.884 | 0.894 0.811 0.590 0.441 0.853 0.303 0.190 0.050
Ours U-Net Multiscale Snap. | 0.674 | 0.910 | 0.896 0.795 0.748 0.561 0.909 0.365 0.343 0.772

23

(b) Semantic 3D results on full test set.
IoU: intersection over union (per class), AloU: average intersection over union, OA: overall accuracy. Classes 1: man-made terrain, 2: natural terrain, 3:

high vegetation, 4: low vegetation, 5: buildings, 6: hardscape, 7: scanning artefacts, 8: cars.

Table 1: Quantitative results on Semantic 3D.

sloping roofs are present at training time. When confronted to roofs
with small inclination, the network is mislead to a ground class. Fi-
nally, high vegetation labels appear on destroyed parts which are
still standing. This is mainly due to the high noise estimation (red
channel of the depth composite image) which is incompatible with
building.

8.3. Limitations and perspectives

Even though the proposed approach obtains the best performances
on the semantic-8 leader board there are still issues to overcome.
First, a non-exhaustive training set influences the results: for exam-
ple missing architectural elements or samples may explain the rel-
atively low scores on hardscape and scanning artifacts. For a more
generic pipeline, one should use a more diversified training set. A
second field of future investigation is postprocessing the results to
remove the outliers by regularization. For example, we could en-
force the volumetric consistency of labels in a neighborhood or im-
pose constraints on points belonging to a common extracted shape.
Another question is the suitability of the method for point-clouds
obtained by accumulating data of low-cost range cameras. They
can be dense enough, but will be noisier than laser point-clouds.
Finally, a promising line of investigation is to perform data aug-
mentation by using data from other sources. For example, syntheti-
cally generated images could be added in the training set, or scenes
could be augmented with 3D models of small objects like cars. In
addition to modifying the proportion of given classes, it increases
the variability of the scenes (more configurations) and consequently
avoids overfitting which leads to a more generic framework.

9. Conclusion

We have presented an new and efficient framework for semantic
labeling of 3D point clouds using deep segmentation neural net-
works. We first generate RGB and geometric composite images of
the scene. These pairs are the inputs of our network architectures
for semantic segmentation. Several strategies for data fusion were

(© 2017 The Author(s)
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investigated, and among them segmentation network with residual
correction proved to perform the best. Finally, image segmentation
were aggregated on the 3D model to give to each point a label. We
experimented on both laser scans and photogrammetric reconstruc-
tion. The method was evaluated against the semantic-8 dataset and
obtained the best performances in the leader board concerning the
global measurements and several individual classes. We also got
encouraging results of transferring networks trained on laser ac-
quisition to photogrammetric data. Although we obtain good per-
formances, several fields of investigation remain such as data aug-
mentation or images generation strategies to improve the scores on
small and rare classes.

Implementation details

The manipulation of point clouds, i.e the preprocessing, the image
creation and the back projection was implemented using Python
and C++; with PCL and the 3D viewer of pyqtgraph.org. The
neural networks were implemented using Tensorflow.
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